1. (a) Prove that pivot columns in an upper echelon matrix are linearly independent

Solution: Let A be an $m \times n$ matrix which is in upper echelon form and without loss of generality let $v_1, v_2,...,v_k, k \leq n$ be the pivot columns of A. Also let $v_j = (v_{1j}, v_{2j}, ..., v_{mj})^t, 1 \leq j \leq k$. Now let $\sum_{j=1}^{k} c_j v_j = 0$. Then $c_k = 0$ because if v_{lk} is the last non-zero entry of v_j , $v_{lj} = 0$ for all $j \leq k$ since the matrix A is in upper echelon form. Similar arguments also show that $c_j = 0$ for $1 \leq j \leq (k-1)$ as well. Hence pivot columns are linearly independent.

(b) Let A be a $p \times q$ upper echelon matrix with k pivots. If $k \leq p < q$, prove that A is not one-one.

Solution: A is a linear transformation from \mathbb{R}^q to \mathbb{R}^p and the range of A is the linear span of the pivot columns. Therefore range of A has dimension k < q. Then the rank nulity theorem tells us that the null space of A has positive dimension. Hence A is not one-one.

2. (a) Find the QR decomposition of $\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ Solution: Let $u_1 = (1, 1, 0, 1)^t$, $u_2 = (1, 2, 0, 1)^t$, $u_3 = (2, 0, 1, 0)^t$. Let $v_1 = u_1$, $v_2 = u_2 - \frac{\langle u_2, u_1 \rangle}{||u_1^2||}$

and $v_3 = \frac{\langle u_3, u_1 \rangle}{||u_1||^2} u_1 - \frac{\langle u_3, u_2 \rangle}{||u_2||^2} u_2$. Let $e_i = \frac{v_i}{||v_i||}$ for $1 \le i \le 3$. Let Q be the matrix consists of e_1 , e_2 , e_3 as its columns vectors. Then

Q is an orthogonal matrix since e_i and e_j are orthogonal to each other if $i \neq j$ and $||e_i|| = 1$, for $(\langle e_1, u_1 \rangle \langle e_1, u_2 \rangle \langle e_1, u_3 \rangle)$

$$i, j \in \{1, 2, 3\}. \text{ Also let } R = \begin{pmatrix} 0 & \langle e_2, u_2 \rangle & \langle e_2, u_3 \rangle \\ 0 & 0 & \langle e_3, u_3 \rangle \end{pmatrix}.$$

Then $\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = QR = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{3}{\sqrt{43}} \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & -\frac{4}{\sqrt{43}} \\ 0 & 0 & \frac{3}{\sqrt{43}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{3}{\sqrt{43}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & \frac{4}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\ 0 & \frac{\sqrt{2}}{\sqrt{3}} & -\frac{\sqrt{2}}{\sqrt{3}} \\ 0 & 0 & \frac{9}{\sqrt{43}} \end{pmatrix} \text{ is the desired decomposition.}$

(b) Give a 3×3 matrix to show that QR decomposition is not unique.

Solution: Consider the matrix $A = \begin{pmatrix} 1 & -2 & -3 \\ 1 & 4 & 7 \\ 0 & 0 & 1 \end{pmatrix}$. Then $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & \sqrt{2} & 2\sqrt{2}\\ 0 & 3\sqrt{2} & 5\sqrt{2}\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\sqrt{2} & -\sqrt{2} & -2\sqrt{2}\\ 0 & -3\sqrt{2} & -5\sqrt{2}\\ 0 & 0 & -1 \end{pmatrix}$

are two QR decompositions of A.

3. (a) Prove that every $p \times q$ matrix has singular value decomposition.

Solution: Let A be a $p \times q$ complex matrix. Then A^*A is a $q \times q$ Hermitian matrix and therefore there exists an orthonormal basis $\{u_1, u_2, ..., u_q\}$ of \mathbb{C}^q consisting of eigenvectors of A^*A with corresponding eigenvalues $s_1 \geq s_2 \geq ... \geq s_q \geq 0$.

Let $\sigma_i > 0$ be such that $\sigma_i^2 = s_i$ for $1 \le i \le q$. Let $U = [u_1, ..., u_q]$ that is U is the matrix consists of u_i 's as its column vectors. Then U is a unitary matrix and $U^*A^*AU = D_q = \text{diag}(s_1, ..., s_q)$, $\text{diag}(s_1, ..., s_q)$ denoting the diagonal matrix with diagonal entries $s_1, ..., s_q$. Now

 $||A(u_i)||^2 = \langle A(u_i), A(u_i) \rangle = \langle A^*A(u_i), u_i \rangle = s_i = \sigma_i^2$. Let r be the largest integer such that $s_r > 0$ (note that if r = 0, then A is the zero matrix).

let $v_i = \frac{1}{\sigma_i}A(u_i)$, $1 \le i \le r$. Then $\langle v_i, v_j \rangle = \frac{1}{\sigma_i\sigma_j} \langle A^*A(u_i), u_j \rangle = \delta_{ij}$. Which shows that v_i 's are orthonormal. If r < p, then we choose $v_{r+1}, ..., v_p$ such that $\{v_1, ..., v_p\}$ is an orthonormal basis of \mathbb{C}^p . Now let $V = [v_1, ..., v_p]$, then V is a unitary matrix. Also let $D = \text{diag}(\sigma_1, ..., \sigma_r)$. Then AU = VD and therefore $A = VDU^*$, which is the singular value decomposition of A.

(b) Prove that the singular values of A and A^* coincide

Solution. If $A = VDU^*$ is the singular value decomposition of A, then taking conjugates on both sides we get the singular value decomposition of A^* as $A^* = UDV^*$. Which shows that the singular values of A and A^* coincide.

4. (a) Let $A \in M_{p \times q}(\mathbb{C})$ and s_1 be the first singular value. Prove that $s_1 = ||A||$.

Solution: Let $A = VDU^*$ be the singular value decomposition of A with singular values $s_1 \ge s_2 \ge ... \ge s_q$. Let $x \in \mathbb{C}^q$ and $y = U^*(x)$. Now

$$||Ax||^{2} = ||VDU^{*}x||^{2} = ||DU^{*}x||^{2} (as \ V \ is \ unitary) = ||Dy||^{2} = \sum_{i=1}^{q} s_{i}^{2}y_{i}^{2} \le s_{1}^{2}||y||^{2} = s_{1}^{2}||x||^{2}, \quad (1)$$

since U is unitary. Therefore, $||A|| \leq s_1$.

Now let u_1 be the first column of U. Then $||u_1|| = 1$ and

$$||Au_1|| = ||DU^*u_1|| = De_1 = s_1,$$

where $e_1 = (1, 0, ..., 0)^t$. This shows that $||A|| = s_1$.

(b) If rank of a $p \times q$ matrix A is q, prove that $s_q = \min_{||x||=1} ||Ax||$

Solution: A similar calculation as in (1) above gives that $||Ax|| \ge s_q$. On the other hand if u_q is the *q*th column of *U*, then $||u_q|| = 1$ and a similar calculation as above shows that $||Au_q|| = s_q$. Hence we get the desired result.

5. Let S be a subspace of ℝⁿ and a, v ∈ ℝⁿ. Denote W = a + S = {a + x | x ∈ S}.
(a) Prove that v can be written uniquely as w + y for w ∈ W and y ∈ S[⊥].

Solution: Let the dimension of S be k and let $\{u_1, u_2, ..., u_k\}$ be a basis of S and let $\{u_{k+1}, ..., u_n\}$ be a basis of S^{\perp} such that $\{u_1, ..., u_n\}$ is an orthonormal basis of \mathbb{R}^n . Then every v can be uniquely written as

$$v = c_1 u_1 + \dots + c_k u_k + c_{k+1} u_{k+1} + \dots + c_n u_n, c_i \in \mathbb{R}.$$
(2)

Now if $a = \sum_{i=1}^{n} a_i u_i$, then

$$v = c_1 u_1 + \dots + c_k u_k + c_{k+1} u_{k+1} + \dots + c_n u_n = \sum_{i=1}^k c_i u_i + \sum_{i=k+1}^n a_i u_i + \sum_{i=k+1}^n (c_i - a_i) u_i.$$
 (3)

Note that $\sum_{i=1}^{k} c_i u_i + \sum_{i=k+1}^{n} a_i u_i \in W$ and $\sum_{i=k+1}^{n} (c_i - a_i) u_i \in S^{\perp}$. As the expression in (2) is unique, it follows that the expression in (3) is also unique.

(b) Prove that $\min_{y \in W} ||v - y||$ has a unique solution.

Solution: Let $v = v_W + v_{S^{\perp}}$ with $v_W \in W$ and $v_{S^{\perp}} \in S^{\perp}$. For any $y \in W$,

$$||v - y||^{2} = ||(v_{w} - y) + v_{S^{\perp}}||^{2} = ||v_{w} - y||^{2} + ||v_{S^{\perp}}||^{2} \ge ||v_{S^{\perp}}||^{2}$$
(4)

and if $y = v_W$, then $||v - y||^2 = ||v_{S^{\perp}}||^2$. So $\min_{y \in W} ||v - y|| = ||v - v_W||$. To show the uniqueness, let $y \in W$ be such that $||v - y||^2 = ||v_{S^{\perp}}||^2$. Then writing $v = v_W + v_{S^{\perp}}$ we get $||v_w - y||^2 + ||v_{S^{\perp}}||^2 = ||v_{S^{\perp}}||^2$, which implies that $y = v_W$.

6. (a) If A is a non-negative and irreducible $n \times n$ matrix, prove that $(I + A)^{n-1}$ is positive.

Solution: $(I+A)^{n-1} = \sum_{k=0}^{n-1} {\binom{n-1}{k}} A^k$. Now suppose for some $i, j \in \{1, ..., n\}, \langle (I+A)^{n-1}e_i, e_j \rangle = 0$. Then $\sum_{k=0}^{n-1} {\binom{n-1}{k}} \langle A^k e_i, e_j \rangle = 0$, which implies that $\langle A^k e_i, e_j \rangle = 0$ for all $0 \le k \le n-1$, contradicting the irreduciblity of A. Hence $(I+A)^{n-1}$ is a positive matrix.

(b) Let T and S be non-negative matrices such that T is irreducible and T - S is non-negative. Prove that $spr(T) \ge spr(S)$ and the equality occurs only if T = S.

Solution: Let $\beta \in spec(S)$ be such that $|\beta| = spr(S)$. Let $y = (y_1, ..., y_n)^t \in \mathbb{C}^n$ be such that $Sy = \beta y$. Let $v = (v_1, ..., v_n)^t = (|y_1|, ..., |y_n|)^t$, then

$$|\beta|v_i = |\beta y_i| = \left|\sum_{j=1}^n S_{ij} y_j\right| \le \sum_{j=1}^n S_{ij} v_j \le \sum_{j=1}^n T_{ij} v_j,$$
(5)

which implies that

$$spr(S) = |\beta| \le \delta_T(v) \le spr(T),$$

where $\delta_T(v) = \min_{1 \le i \le n} \left\{ \frac{\langle Tv, e_i \rangle}{\langle v, e_i \rangle} : \langle v, e_i \rangle > 0 \right\}$, e_i denoting the *i*th member of the standard basis of \mathbb{R}^n .

Now let spr(S) = spr(T), we will show that S = T. From (5) we have $T(v) - spr(S)v \ge 0$ and therefore, $T(v) - spr(T)v \ge 0$ since spr(S) = spr(T). If T(v) - spr(T)v > 0, then

$$\langle Tv, e_i \rangle > spr(T) \langle v, e_i \rangle$$
.

This implies that $\delta_T(v) > spr(T)$, which is a contradiction. Hence T(v) = spr(T)v. Since T is also irreducible, it follows that $v_i > 0$ for $1 \le i \le n$.

Since $\beta v = Tv$ and $v_i > 0$, we get

$$\sum_{j=1}^{n} T_{ij} v_j = spr(T) v_i = spr(S) v_i = \sum_{j=1}^{n} S_{ij} v_j,$$

which implies that $\sum_{j=1}^{n} (T_{ij} - S_{ij})v_j = 0$. Hence S = T.

7. (a) Let A be a non-negative irreducible matrix. If λ is an eigenvalue of A with eigenvector $x \ge 0$, prove that λ is the spectral radius of A.

Solution: First we show that actually x > 0. If not, let $x_i = 0$ for some $i \in \{1, ..., n\}$ (assuming A to be an $n \times n$ matrix). Then for any $k \in \mathbb{N}$, $\sum_{j=0}^{n} A_{ij}^k x_j = \lambda^k x_i = 0$. Since x can not be a zero vector, it follows that $A_{ij}^k = 0$ for some j and for any $k \in \mathbb{N}$ contradicting the irreducibility of A. Now let μ be the spectral radius (which is also an eigenvalue in this case) of A and let u > 0 be such that $Au = \mu u$. If we choose $\varepsilon > 0$ very small then $u - \varepsilon v > 0$ as well. By the property of spectral radius we know that there is some $i \in \{1, ..., n\}$ such that

$$\frac{\langle A(u-\varepsilon x), e_i \rangle}{\langle u-\varepsilon x, e_i \rangle} \le \mu$$

From which it follows after a simple calculation that $\mu \leq \lambda$. Hence λ is the spectral radius of A.

(b) Prove that
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 3 \\ 0 & 2 & 0 \end{pmatrix}$$
 is irreducible and find its Perron-pair

Solution: We have $A^2 = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 9 & 0 \\ 6 & 0 & 6 \end{pmatrix}$. Therefore comparing A and A^2 we see that if the *ij*th

entry of A is 0, then the ijth entry of A^2 is positive. Therefore, A is irreducible.

The characteristic equation for A is $x^3 - 9x = 0$, therefore, the Frobenius eigenvalue is 3. A routine calculation shows that the vector $v = (\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}})^t$ is an eigenvector corresponding to the eigenvalue 3 with ||v|| = 1. Hence the Perron-pair of the matrix A is $(3, (\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}})^t)$.