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1. (a) Prove that pivot columns in an upper echelon matrix are linearly independent

Solution: Let A be an m×n matrix which is in upper echelon form and without loss of generality
let v1, v2,...,vk, k ≤ n be the pivot columns of A. Also let vj = (v1j , v2j , ..., vmj)

t, 1 ≤ j ≤ k.

Now let
k∑
j=1

cjvj = 0. Then ck = 0 because if vlk is the last non-zero entry of vj , vlj = 0 for all

j ≤ k since the matrix A is in upper echelon form. Similar arguements also show that cj = 0 for
1 ≤ j ≤ (k − 1) as well. Hence pivot columns are linearly independent. �

(b) Let A be a p× q upper echelon matrix with k pivots. If k ≤ p < q, prove that A is not one-one.

Solution: A is a linear transformation from Rq to Rp and the range of A is the linear span of the
pivot columns. Therefore range of A has dimension k < q. Then the rank nulity theorem tells us
that the null space of A has positive dimension. Hence A is not one-one. �

2. (a) Find the QR decomposition of


1 1 2
1 2 0
0 0 1
1 1 0


Solution: Let u1 = (1, 1, 0, 1)t, u2 = (1, 2, 0, 1)t, u3 = (2, 0, 1, 0)t. Let v1 = u1, v2 = u2− <u2,u1>

||u2
1||

and v3 = <u3,u1>
||u1||2 u1 − <u3,u2>

||u2||2 u2. Let ei = vi
||vi|| for 1 ≤ i ≤ 3. Let Q be the matrix consists of e1,

e2, e3 as its columns vectors. Then
Q is an orthogonal matrix since ei and ej are orthogonal to each other if i 6= j and ||ei|| = 1, for

i, j ∈ {1, 2, 3}. Also let R =

< e1, u1 > < e1, u2 > < e1, u3 >
0 < e2, u2 > < e2, u3 >
0 0 < e3, u3 >

.

Then


1 1 2
1 2 0
0 0 1
1 1 0

 = QR =


1√
3
− 1√

6
3√
43

1√
3

√
2√
3
− 4√

43

0 0 3√
43

1√
3
− 1√

6
− 3√

43



√

3 4√
3

2√
3

0
√
2√
3
−
√
2√
3

0 0 9√
43

 is the desired decomposition.

(b) Give a 3× 3 matrix to show that QR decomposition is not unique.

Solution: Consider the matrix A =

1 −2 −3
1 4 7
0 0 1

. Then

A =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

√2
√

2 2
√

2

0 3
√

2 5
√

2
0 0 1

 =

− 1√
2

1√
2

0

− 1√
2
− 1√

2
0

0 0 −1

−√2 −
√

2 −2
√

2

0 −3
√

2 −5
√

2
0 0 −1


are two QR decompositions of A.
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3. (a) Prove that every p× q matrix has singular value decomposition.

Solution: Let A be a p × q complex matrix. Then A∗A is a q × q Hermitian matrix and
therefore there exists an orthonormal basis {u1, u2, ..., uq} of Cq consisting of eigenvectors of A∗A
with corresponding eigenvalues s1 ≥ s2 ≥ ... ≥ sq ≥ 0.

Let σi > 0 be such that σ2
i = si for 1 ≤ i ≤ q. Let U = [u1, ..., uq] that is U is the matrix consists

of ui’s as its column vectors. Then U is a unitary matrix and U∗A∗AU = Dq = diag(s1, ..., sq),
diag(s1, ..., sq) denoting the diagonal matrix with diagonal entries s1, ..., sq. Now
||A(ui)||2 =< A(ui), A(ui) >=< A∗A(ui), ui >= si = σ2

i . Let r be the largest integer such that
sr > 0 (note that if r = 0, then A is the zero matrix).

let vi = 1
σi
A(ui), 1 ≤ i ≤ r. Then < vi, vj >= 1

σiσj
< A∗A(ui), uj >= δij . Which shows that vi’s

are orthonormal. If r < p, then we choose vr+1, ..., vp such that {v1, ..., vp} is an orthonormal basis
of Cp. Now let V = [v1, ..., vp], then V is a unitary matrix. Also let D = diag(σ1, ..., σr). Then
AU = V D and therefore A = V DU∗, which is the singular value decomposition of A.

(b) Prove that the singular values of A and A∗ coincide

Solution. If A = V DU∗ is the singular value decomposition of A, then taking conjugates on both
sides we get the singular value decomposition of A∗ as A∗ = UDV ∗. Which shows that the singular
values of A and A∗ coincide.

4. (a) Let A ∈Mp×q(C) and s1 be the first singular value. Prove that s1 = ||A||.

Solution: Let A = V DU∗ be the singular value decomposition of A with singular values
s1 ≥ s2 ≥ ... ≥ sq. Let x ∈ Cq and y = U∗(x). Now

||Ax||2 = ||V DU∗x||2 = ||DU∗x||2(as V is unitary) = ||Dy||2 =

q∑
i=1

s2i y
2
i ≤ s21||y||2 = s21||x||2, (1)

since U is unitary. Therefore, ||A|| ≤ s1.

Now let u1 be the first column of U . Then ||u1|| = 1 and

||Au1|| = ||DU∗u1|| = De1 = s1,

where e1 = (1, 0, ..., 0)t. This shows that ||A|| = s1.

(b) If rank of a p× q matrix A is q, prove that sq = min||x||=1||Ax||

Solution: A similar calculation as in (1) above gives that ||Ax|| ≥ sq. On the other hand if uq
is the qth column of U , then ||uq|| = 1 and a similar calculation as above shows that ||Auq|| = sq.
Hence we get the desired result.

5. Let S be a subspace of Rn and a, v ∈ Rn. Denote W = a+ S = {a+ x|x ∈ S}.
(a) Prove that v can be written uniquely as w + y for w ∈W and y ∈ S⊥.

Solution: Let the dimension of S be k and let {u1, u2, ..., uk} be a basis of S and let {uk+1, ..., un}
be a basis of S⊥ such that {u1, ..., un} is an orthonormal basis of Rn. Then every v can be uniquely
written as

v = c1u1 + ...+ ckuk + ck+1uk+1 + ...+ cnun, ci ∈ R. (2)
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Now if a =
n∑
i=1

aiui, then

v = c1u1 + ...+ ckuk + ck+1uk+1 + ...+ cnun =

k∑
i=1

ciui +

n∑
i=k+1

aiui +

n∑
i=k+1

(ci − ai)ui. (3)

Note that
k∑
i=1

ciui +
n∑

i=k+1

aiui ∈W and
n∑

i=k+1

(ci − ai)ui ∈ S⊥. As the expression in (2) is unique,

it follows that the expression in (3) is also unique.

(b) Prove that miny∈W ||v − y|| has a unique solution.

Solution: Let v = vW + vS⊥ with vW ∈W and vS⊥ ∈ S⊥. For any y ∈W ,

||v − y||2 = ||(vw − y) + vS⊥ ||2 = ||vw − y||2 + ||vS⊥ ||2 ≥ ||vS⊥ ||2 (4)

and if y = vW , then ||v − y||2 = ||vS⊥ ||2. So miny∈W ||v − y|| = ||v − vW ||.
To show the uniqueness, let y ∈W be such that ||v − y||2 = ||vS⊥ ||2. Then writing
v = vW + vS⊥ we get ||vw − y||2 + ||vS⊥ ||2 = ||vS⊥ ||2, which implies that y = vW .

6. (a) If A is a non-negative and irreducible n× n matrix, prove that (I +A)n−1 is positive.

Solution: (I+A)n−1 =
n−1∑
k=0

(
n− 1
k

)
Ak. Now suppose for some i, j ∈ {1, ..., n},

〈
(I +A)n−1ei, ej

〉
=

0. Then
n−1∑
k=0

(
n− 1
k

)〈
Akei, ej

〉
= 0, which implies that

〈
Akei, ej

〉
= 0 for all 0 ≤ k ≤ n − 1, con-

tradicting the irreduciblity of A. Hence (I +A)n−1 is a positive matrix.

(b) Let T and S be non-negative matrices such that T is irreducible and T − S is non-negative.
Prove that spr(T ) ≥ spr(S) and the equality occurs only if T = S.

Solution: Let β ∈ spec(S) be such that |β| = spr(S). Let y = (y1, ..., yn)t ∈ Cn be such that
Sy = βy. Let v = (v1, ..., vn)t = (|y1|, ..., |yn|)t, then

|β|vi = |βyi| =

∣∣∣∣∣∣
n∑
j=1

Sijyj

∣∣∣∣∣∣ ≤
n∑
j=1

Sijvj ≤
n∑
j=1

Tijvj , (5)

which implies that
spr(S) = |β| ≤ δT (v) ≤ spr(T ),

where δT (v) = min1≤i≤n

{
<Tv,ei>
<v,ei>

:< v, ei >> 0
}

, ei denoting the ith member of the standard

basis of Rn.

Now let spr(S) = spr(T ), we will show that S = T . From (5) we have T (v) − spr(S)v ≥ 0 and
therefore, T (v)− spr(T )v ≥ 0 since spr(S) = spr(T ). If T (v)− spr(T )v > 0, then

< Tv, ei >> spr(T ) < v, ei > .

This implies that δT (v) > spr(T ), which is a contradiction. Hence T (v) = spr(T )v. Since T is also
irreducible, it follows that vi > 0 for 1 ≤ i ≤ n.
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Since βv = Tv and vi > 0, we get

n∑
j=1

Tijvj = spr(T )vi = spr(S)vi =

n∑
j=1

Sijvj ,

which implies that
n∑
j=1

(Tij − Sij)vj = 0. Hence S = T .

7. (a) Let A be a non-negative irreducible matrix. If λ is an eigenvalue of A with eigenvector x ≥ 0,
prove that λ is the spectral radius of A.

Solution: First we show that actually x > 0. If not, let xi = 0 for some i ∈ {1, ..., n} (assuming

A to be an n × n matrix). Then for any k ∈ N,
n∑
j=0

Akijxj = λkxi = 0. Since x can not be a zero

vector, it follows that Akij = 0 for some j and for any k ∈ N contradicting the irreducibility of A.

Now let µ be the spectral radius (which is also an eigenvalue in this case) of A and let u > 0 be
such that Au = µu. If we choose ε > 0 very small then u − εv > 0 as well. By the property of
spectral radius we know that there is some i ∈ {1, ..., n} such that

〈A(u− εx), ei〉
〈u− εx, ei〉

≤ µ.

From which it follows after a simple calculation that µ ≤ λ. Hence λ is the spectral radius of A.

(b) Prove that A =

0 1 0
3 0 3
0 2 0

 is irreducible and find its Perron-pair.

Solution: We have A2 =

3 0 3
0 9 0
6 0 6

 . Therefore comparing A and A2 we see that if the ijth

entry of A is 0, then the ijth entry of A2 is positive. Therefore, A is irreducible.

The characteristic equation for A is x3 − 9x = 0, therefore, the Frobenius eigenvalue is 3. A
routine calculation shows that the vector v = ( 1√

14
, 3√

14
, 2√

14
)t is an eigenvector corresponding to

the eigenvalue 3 with ||v|| = 1. Hence the Perron-pair of the matrix A is (3, ( 1√
14
, 3√

14
, 2√

14
)t).
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